
Homework 3
I agree to abide by the Stern Code of Conduct (name & NYU ID) _______________

Question 1

Suppose X1, . . . , Xn are independent and identically distributed (i.i.d.) with the same distribution as X. Let
Sn =

∑n
i=1 Xi, so X̄n = 1

nSn, this shorthand will be useful for parts (b) through (c).

a.

What do we need to know or assume about E[X1] to conclude that X̄n → µ as n→∞?

Solution: Since X̄n → E[X] as n→∞, we need to assume µ = E[X].

b.

Suppose X can only be -1 or 1. What are the lowest and highest possible values of Sn?

Solution: If every Xi = −1 then Sn = −n is the lowest possible value. Similarly, Sn = n is the highest
possible value of Sn.

c.

Suppose n = 99, X̄99 = 0.01, we are going to add one new observation X100 to the sample, and we know
−1 ≤ X100 ≤ 1. What are the lowest and highest possible values for X̄100?

Solution: If we compare the mean of the first n observations with the mean of the first n+ 1, we see

X̄n+1 = n

n+ 1X̄n + 1
n+ 1Xn+1

Plugging in n = 99 and Xn = 0.01, we have

X̄n+1 = 99
1000.01 + 1

100X100 = 0.0099 + 1
100X100

Since −1 ≤ X100 ≤ 1, this number is between 0.0099± 0.01 or approximately 0 and 0.02.

Question 2

a.

At a casino there is a game where the player bets some amount of money X and then spins a wheel. If the
wheel says they win, they get X dollars. Otherwise they lose and pay X dollars to the casino. I have the
perfect gambling strategy to guarantee that I win this game. On the first round I bet X1. If I win, the payoff
is X1 dollars. If I lose, I go “double or nothing” and bet X2 = 2X1 on the second game. I repeat this strategy,
doubling my bet every time until I win. If I win on the first round, my payoff will be X1. If I win on the nth
round, my payoff will be 2nX1. Aside from the practical fact that I may run out of money before I win, this
sequence of payoffs/losses doesn’t satisfy the assumptions of the law of large numbers. Which assumption(s)
does it violate?

1



Solution: The law of large numbers applies to sequences of independent and identically distributed random
variables. The sequence of payoffs/losses in this game are not identically distributed, since they double in
size each time.

b.

Your roommate suggests rolling a standard 6-sided die to decide who does the cleaning chores each day. If
the die comes up 3 or less, you win, and your roommate does the chores. If it’s higher than 3, you do the
chores. Let D represent the dice, so D ∈ {1, . . . , 6}, and let X = 1 if D > 3 and 0 otherwise. Let Di, Xi

represent the result on day i, so X1, . . . , Xn are i.i.d. with the same distribution as X (and similarly for
the D’s). What is E[X]? The proportion of times that you do the chores in n days is X̄n. What will that
proportion be in the long run, as n→∞? Does this system seem fair to you?

Solution: E[X] = P (D > 3) = 3/6 = 1/2. In the long run X̄n → 1/2 so I do the chores half of the time.
This seems fair.

c.

Next, your roommate suggests a small change in the rules: keep track of the average of the dice D̄n =
1
n

∑n
i=1 Di, and then you only need to do the chores whenever this average is higher than 3. Based on this

system, in the long run what proportion of the time will you be doing the chores?

Solution: Since E[D] = 3.5, we know D̄n → 3.5 as n→∞. This means that eventually I will have to do the
chores every day, so in the long run I do all the chores. That seems unfair.

d.

Continuing part (b), suppose you have had a streak of bad luck and had to do the chores every day for a
week. Your roommate reassures you, “Don’t worry, if you do the chores a bunch of times then it becomes
more likely for me to do them a bunch of times, since it has to even out in the long run.” Do you agree? Why
or why not?

Solution: This the “Gambler’s fallacy.” The dice rolls are independent, so it does not become any more or
less likely for my roommate to do the chores based on previous days.

Question 3

Let X1, X2, . . . , Xn be i.i.d. with mean µ and variance σ2, so Var(X̄) = σ2/n.

Applying Chebyshev’s inequality to the mean X̄ tells us that

P (|X̄ − µ| ≥ σ) ≤ 1
n

If we instead apply the central limit theorem, we would find

P (|X̄ − µ| ≥ σ) ≈ 2Φ
(
−
√
n
)

where Φ is the CDF of the standard normal distribution N(0, 1). We can calculate this in R with the code
2*pnorm(-sqrt(n)).
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Part a.

Try both methods for n = 5 and for n = 10 and write the numbers you get below.

Solution:

Chebyshev:
c(1/5, 1/10)

## [1] 0.2 0.1

CLT: (easy solution)
c(2*pnorm(-sqrt(5)), 2*pnorm(-sqrt(10)))

## [1] 0.025347319 0.001565402

CLT: (fancy solution)
CLT <- function(n) 2*pnorm(-sqrt(n))
CLT(c(5, 10))

## [1] 0.025347319 0.001565402

Part b.

Which method gives you a stronger conclusion about X̄, Chebyshev or the CLT?

Solution: The CLT method says the probability that X̄ is close to the true mean is higher than the answer
from the Chebyshev inequality. The Chebyshev inequality gives us less certainty, so the CLT is the one with
a stronger conclusion.
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